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Abstract. A new description of one-dimensional scattering processes in terms of boson operators
is presented, and the Sdédinger equation in a general form is analysed in this description on the
basis of the factorization scheme. As an example of application, a low-energy expansion formula
of the Green function is derived within the framework of this formalism.

1. Introduction

Scattering theory of the Sabdinger equation in one dimension has always been an active
area of research since the foundation of quantum mechanics. In recent years, there has been
considerable interest in this area with relation to the inverse scattering method for nonlinear
problems [1,2]. A particularly important issue in scattering theory is the analysis of the Green
function. Asymptotic expansions for the Green function and related functions in high- and
low-energy regions have been extensively studied by many researchers using various methods.
(See [3-5] and references therein.) The aim of this paper is to provide another viewpoint to
this old problem.

Here we study the structure of the Green function on the basis of a new description of
scattering processes. We consider the one-dimensiona@ober equation

90 92
Igwu; 1) = —@w(x; 1)+ Vs(x)¥(x; 1) (1.1)

or its stationary-state form
2

d
——=¥x) + V()Y (x) = EYr(x). (1.2)
dx2

HereVs(x) is the potential and denotes the energy. We set the origin of the energy scale at
the ground state level, so that the ground state has zero energy.

In our analysis we make use of factorization of the $dimger operator. It is well known
that the Schvdinger equation (1.2) can be factorized as

d d
- [d_ + f(X)} [d_ - f(X)] v(x) = Ey(x) 1.3)
X X

where

df(x)
dx
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Vs(x) = [f(0)]2+ . (1.4)
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Leto(x) be a solution of equation (1.2) with = 0, such thatyo(x) > 0 for anyx. Thisg
is the wavefunction of the ground state if it is a bound state. The fungtiehsatisfying (1.4)
is expressed in terms @fy as

1 d
fx) = mawo(x)‘ (1.5)

This kind of factorization, which has a fairly long history, has recently been extensively utilized
in the context of supersymmetric quantum mechanics [6, 7]. Aside from the supersymmetry,
the factorization is useful for studying general properties of the @lthger equation. The
factorized equation (1.3) is much more manageable than (1.2), and we can construct explicit
formulae for the Green function in terms of the functip@x) given by (1.5). This amounts to
expressing the Green function in terms of the wavefunction of the ground state.

Another important aspect of the factorization is its close relation with the Fokker—Planck
equation [8-11]. The one-dimensional Fokker—Planck equation describing the diffusion
process in a potentidf (x) has the form [12,13]

9 P(x;t) = o2 P(x; 2 9 P(x; 1.6
E (-xvt)_a_xz (X,t)_ a[f(x) (-xvt)] ( . )
where
1d
fx) = —éav(x)- x.7)

The Schédinger equation (1.1) is equivalent to the Fokker—Planck equation (1.6), with the
correspondence

Y =e'Wi2p t < —it (1.8)

the functionf (x) in equation (1.6) being the same as that in equation (1.3). Therefore, a study
of the factorized Scliidinger equation is also important for applications in nonequilibrium
problems.

Throughout this paper we lét(x) denote the Fokker—Planck potential, which is related
to f(x) by (1.7). From (1.5) and (1.7) we have

V(x) = —2logyo(x) + constant (1.9

(We may drop the constant in (1.9), since it is always cancelled in the final result.) For the
time being, we assume that both(+oo) andV (—oo) are finite, and thaV (x) converges to
these limits sufficiently fast. (We shall see the specific meaning of this ‘sufficiently fast’ in
section 9.) However, as demonstrated later, we can also deal with the cased\@hetends
to infinity atx — +o0.

The Green functionGg(x, x’; ) for the Schédinger equation (1.1) is defined as the
solution of
H a ’ 82 !/ ’ /
IgGS(x, x5t + ﬁGg(x, x5 t) — Ve(x)Gs(x, x5 1) = 8(x —x")8(). (1.10)

We shall deal with retarded Green functions, and'saatisfies the conditio6 g(x, x’; 1) = 0
fort < 0. Its Fourier transform

Gs(x,x'; E) = / eF'Gg(x, x'; )t (1.11)

—0Q

is the Green function for the stationary-state equation (1.2), satisfying

2
[%—Vg(x)+E:| Gs(x,x'; E) =68(x —x'). (1.12)
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Figure 1. Schematic representation of the scattering process in one dimension. The rules for
interpreting such diagrams are given in figure 2. The horizontal direction of the figure corresponds
to the space coordinate. The vertical direction does not have any particular meaning. Such a
diagram, when integrated over the positions of the crosses, amountssithtbeder term in the

Born expansion (1.19). (In this example= 13.)

Let Gr(x, x'; t) denote the Green function of the Fokker—Planck equation (1.6), satisfying

B 92 0
—Gr(x,x';t) — —Gp(x,x'; ) +2—[f(x)Gr(x, x"; )] = 8(x — x")8(2). (1.13)
ot ax2 ax

We define its Fourier transform

Gr(x,x';w) = / € Gr(x, x’; 1)dr. (1.14)
0

Then we have the relation
Gr(x,x';w) = —eVOVEON2G(x x'; E) (1.15)

with E = iw. Thus, the Green function of the Fokker—Planck equation, which plays a
fundamental role in diffusion problems, is obtained fra@m by analytic continuation to
imaginary values of energy.

The free-particle Green functiaBip(x, x’; E) for the stationary Sckdinger equation is
the solution of

(3_2 + E) Go(x,x'; E) =8(x — x'). (1.16)
9x2
Its explicit form is obtained as
00 ip(x—x") i .
Go(x,x"; E) = % /700 ﬁdp = Z_kIeIklx—x’I (1.17)
where
k=+E. (1.18)

(Here§ is a positive infinitesimal quantity that ensures the ‘retarded’ boundary condition.)
Using Gy, the Green function of equation (1.2) can be expanded in terriis a$

o0
Gs(x,x'; E) = Go(x, x'; E)+/ dy1Go(x, y1; E)Vs(y1) Go(y1, x'; E)
—0Q

o0 o0
+/J dy1dy>Go(x, y2; E)Vs(y2)Go(y2, y1: E)Vs(y1)Go(y1, x's E)+---.
—oa) —o00

(1.19)

This is the Born expansion. The Born expansion in one dimension is graphically represented
by paths in one-dimensional space that connects the pdiatsdx, as in figures 1 and 2.

We may use (1.4) and write the Born expansion in termg@f) rather thanVs(x). The
diagrammatic rules (figuresi®E(d)) become particularly simple when expressed in terms of
f(x). After an easy calculation (see appendix A), we obtain the following rules:
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Figure 2. Rules for the diagrammatic representation.
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Figure 3. Diagrammatic rules expressed in terms ofFigure 4. Graphical representation of the scattering
f(x). process re-expressed in termsfofThe interaction takes
place only at the turning points of the path.

(1) The left reflection at positiom (figure 2{)) gives a factor2ikf (y).
(2) The right reflection at position (figure 2€)) gives a factor +Zif (y).
(3) The forward scattering (figure @) vanishes.

The remarkable point is that there is no forward scattering, so that the interaction takes place
only where the path changes its direction. These rules can be further simplified, since the factor
2ik that comes from each scattering ((1) and (2) above) is cancelled by the fag¢t@k) in
Go. Therefore, apart from an overall facteti/(2k) in the final result, we can calculate the
Green function with the diagrammatic rules given in figure 3. Now we tié&te?, instead
of —ie'k2=2) /(2k), as the free propagator. The Green function is obtained by taking the sum
of such diagrams as in figure 4, now with the rules of figure 3, and multiplying it with the
overall factor—i/(2k). (Here the ‘sum of diagrams’ implies integrations over the positions of
the turning points, as well as the summation over the number of turning points.)

The diagrammatic representation of the scattering process leads us in a natural way to
a description in terms of boson operators [14]. We regard the space coordiagaiglaying
the role of time in usual quantum mechanics, and interpret the free propagator (fig))res3(
the propagation line of a boson. Since the free propagator connectarglx has the form
exp[ik(x — x")] for x > x’, we can see that the ‘energy’ of the free bosoris Therefore,
the free propagation of the boson is described by the unperturbed ‘Hamiltonian’

Ho = —ka'a (1.20)
wherea anda' are boson annihilation—creation operators satisfying the commutation relation
[a,a'] = 1. (1.21)

We interpret the scattering vertices (figure®)34nd €)) as the pair annihilation and pair
creation of bosons. The vertex in figurébB(which is interpreted as the pair annihilation, is
represented by the operater%faa. (The% is a symmetry factor.) Similarly, figure &(is
represented bgfaTaT. So the scattering is described by the interaction Hamiltonian

H(x) = —'Ef(x)(aa —atah, (1.22)
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As in usual quantum mechanics, we define the evolution opelats the solution of
.0
Ia—U(x,xo; k) = [Ho+ H'(x)]U (x, x0; k) (1.23)
X

with the initial conditionU (x = xo; k) = 1. Using this evolution operator, we define the
complete propagator as

(01U (00, x; k)(a +a"U (x, x'; k)(a +a")U (x', —o00; k)|0)
(O]U (00, —00; k)|0)

where|0) is the vacuum state satisfying0) = 0. (Hereafter we assume> x’ without loss

of generality.) Itis obvious that this gives the sum of all such diagrams as the one in figure 4,

with the rules of figure 3. The quantitp|U (oo, —o0; k)|0) in the denominator cancels the

contribution from disconnected diagrams. The operator: is assigned to the poinisand

x’, since an endpoint of a path corresponds to either creation or annihilation of a boson line.

Therefore, we find that the Green function of the Sclimger equation is obtained as

G(x,x'; k) = (1.24)

Gs(x.x': E) = ;—kIG(x, Xk k=+E. (1.25)

Let us note that we may shift the unperturbed Hamiltonian (1.20) by an arbitrary constant.
Adding a constant to Hy gives rise to an extra factor expic(xo — x3)] in front of the
evolution operatol/ (x,, x1; k). Such factors are cancelled between the denominator and the
numerator of (1.24), and so expression (1.24) remains unchanged. For convenience in our
future discussion, we replace (1.20) by

k k
Ho = —ka'a — 5= —E(aaT +a'a). (1.26)

The evolution equation (1.23) now takes the form
9 I T TS S S ot .
3 U(x, xo0: k) = 3[ik(aa’ +a'a) — f(x)(aa —a'a")]U(x, xo; k). (1.27)
X

The Born expansion is essentially a high-energy expansion. Although (1.24) is originally
derived from the Born expansion, we can turn it into a low-energy expansion by a symmetry
transformation. This is a remarkable feature of expression (1.24), and we shall study it
thoroughly in this paper.

The boson representation depicted above is the ‘old’ boson picture already discussed in
previous papers [14,15]. Although itis useful for understanding many properties of scattering
processes, it is not necessarily the most suitable representation for actual calculations. In this
paper we introduce a different representation in terms of boson operators of a different kind,
which will provide a new viewpoint on scattering processes in general.

We begin our analysis with the old boson representation. We study the structure of the
propagator in sections 3 and 4, starting from the expression (1.24). In section 5 we introduce
a new representation in terms of another kind of boson operator. In section 6, an expression
of the propagator is derived in this representation. As an application of this formalism, in
sections 7 and 8 we derive a low-energy expansion formula of the Green function [16] by
using this new boson representation.

2. Scattering coefficients

Before getting into the main thread, let us briefly remark upon the scattering coefficients
(transmission and reflection coefficients). Although we do not develop a detailed discussion
on the scattering coefficients in this paper, they are very important quantities in describing
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scattering processes. So it is worthwhile to notice here how they can be dealt with in our
formalism.
We define the scattering coefficients for a finite inter@al, x2) as follows [15]. We
consider the Fokker—Planck potent#lx), which is the same a¥ (x) within the interval
(x1, x2) and constant outside:
Vi(x1) (x < x1)
Vix)=1{ V) (x1 < x < x2) (2.1)
V(x2) (x2 < x).
The corresponding Sctdinger potential is

_ _ df 1d
mef“~f fo) = —~—wm (2.2)

(The functionV (x) defined by (2.1) is not, in general, smoothat x; andx = x». Therefore
f(x) is discontinuous, antfs(x) includes delta functions at these pointst.) Sifigéx) =
outside the intervalx,, x;), the Schddinger equation

2.(# )
s + Vsl// =k (2.3)
has two independent solutions of the form
HOT 4 R (xp, xp) @R (x <x1)
= . | 2.
V1) { T (xg, x1)k—2) (x2 < x) (2.%)
7 (2, xp)E KO (x < x1)
= _ . 2.4
v2(0) { e kK32 4 R, (xp, xp)€F T (x2 < x). (2.40)

This defines the right reflection coefficia®y, left reflection coefficienr,, and the transmission
coefficientr for the interval(x1, x2). The connection to the standard scattering coefficients,
which are defined with regard to the asymptotic behaviour at infinity, is explained in [15].
These coefficients can be expressed in the boson representation ast
(OlaU (x2, x1)a|0)
T2 ) = 00 (e, x0I0) (2-5)
(OlaaU (x2, x1)|0)
Rr 3240 = 2010 (e 1) [0) (2.%)
(O|U (x2, x1)a'a|0)
Rtz X0 = =00 (e, x0l0) (2.%)
Namely, the transmission coefficientx,, x1) is the sum over the paths that penetrate the
interval (x1, x2) without leaving it. The right reflection coefficie®, (xz, x1) is the sum over
the paths, also restricted within, x,), that start from and return te, the right edge of the
interval. Similarly,R; is obtained as the sum over the paths that start from and return to the
left edge.
We can treat these scattering coefficients in the same way as the Green function. Let us
generalize the definition of the propagator (1.24) as

(0|U(z, x)(a +a"U (x,x")(a+a"U (', )|0)
(01U (z, 2)10)

Gix,x';z,7) = (2.6)

T In fact, the scattering coefficients are well defined even(if) has discontinuities, although (x) is then rather
problematic. In such cases, we may regtia) as a limit of continuous functions.
¥ See [14,15] and references therein.
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Figure 5. Diagrammatic interpretation of the generalized
propagatorG(x, x'; z, 2/; £, €).  (We omit the cross
representing the interaction, which takes place wherever
the path changes its direction.)

1
1
1
1
'

z

wherez andz’ are real numbers such thdt< x” < x < z. (Here and hereafter we omit to
write the argument.) This is the sum over the paths connectihgndx, now restricted within
the interval(z’, z). The original propagator is recovered by setting: +oco andz’ = —oo.
From (2.6) and (2.5) we can see that

G (x2, x1; X2, X1) = T(x2, X1) (2.7a)
G(x2, x2; X2, x1) = 1+ R, (x2, x1) (2.70)
G(x1, x1; x2, x1) = 1+ R;(x2, x1). (2.70)

Thus the propagator describes the scattering coefficients as well as the Green function.

3. General formalism

It is convenient to further generalize (2.6) and define

(01659920 (z, x)(a + a YU (x, x')(a +a YU (x', 2/)€'9'4'/2|0)
(Ol€faa/2U (z, /)ef'*'a'/2|0)

with new parameter§ and&’. This G is the sum of all such diagrams as in figure 5.

Corresponding to the newly inserted operatd¥s/é and €“'«'/2, these diagrams include

additional scattering vertices at the poiatandz’. Each scattering (reflection) atand 7’
gives a factog andé’, respectively. Of course, (3.1) reduces to (2.6) by selirg&’ = 0.

G(x,x';2,7;€,8) = (3.1)

From (1.25) and (2.7) we find that the Green function and the scattering coefficients are obtained

from G as
i
Gs(x,x) = EG()C, x'; 00, —00; 0, 0) (3.29)
T(x2, x1) = G(x2, x1; X2, x1; 0; 0) (3.20)
R, (x2, x1) = G(x2, x2; x2,%1; 0,0) — 1 (B.x)
Ri(x2, x1) = G(x1, x1; x2,x1; 0,0) — 1. (3.2d)

The generalized form (3.1) proves suitable for studying the symmetry structure of the

propagator, as we shall see. Moreover, there is also a practical merit. So far we have been
assuming that the Fokker—Planck potentidk) is finite at bothx — +oco and—oo. In such
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cases, the original Green functi@ghis recovered fronG by settingé = & = 0 and then
taking the limitz — +o0, 77 — —o0. However, including the parametegysandé’ enables us
to deal with other cases as well. Note that the vglue 1 corresponds to a totally reflecting
wall at positionz. So if V (x) diverges to o atx — oo, we may set = 1 (instead of = 0)
before letting; — oo. Indeed, this procedure proves to give the correct low-energy expression
of the Green function, provided th&t(x) diverges sufficiently fast. (We shall comment on
this condition in section 9.) On the other ha§d= —1 describes a totally absorbing wall.
Therefore, ifV (x) goes to—oco atx — oo, it is appropriate to set = —1 beforez — oc.
Similarly, we may set’ = 0, +1, or—1, corresponding to the cas®q—oo) = finite,
+00, Or —oo, respectively, before taking the limit — —oo. Thus, using the generalized
expression (3.1), we can deal with the cases wiighe is infinite atx — +oo or x — —o0,
or both.

Expression (3.1) can be written in a purely algebraic form as follows. (See [14] for details.)
First, we define

Ji = —%aTaJr J_ = %aa Jz = %‘(anr +a'a) (3.3)

Q0+ = %Za* 0_ = %a. (3.%)
ThenJs, Ji, and Q. satisfy

Jo=—0? =07 J3=3(0+0-+0_0+) (3.4)

[J5.0:1=30+  [J50]1=-30" (3.40)
where [A,B] = AB — BA. Operators satisfying relations (3.4) constitute a Lie

superalgebra[17,18]. (This superalgebra bears no relation to the supersymmetry mentioned in
section 1, which is associated with the factorization of the &tihger operator.) From (3.4)

we can derive the remaining commutation relations among these operators:

[J3, Ji] = T+ (s, J]=—J_ [Je, J-] =2J3 (3.53)

[J-. 0+] = O- [J+, Q-1= QO+ [J+. Q] =[J-. Q-] =0. (3.50)

Note that equations (38} are nothing but the&U (2) (or SL(2, C)) commutation relations.

Just like the usual angular momentum operators, we use the notation

Ji=+J))/2 Jo=—i(Jy —J2)/2. (3.6)
Next, we write
(W, @) = (V|P) (3.7)

where the right-hand side denotes the ordinary inner product in the Fock space. (Perhaps it
would be more appropriate to write (3.7) as, for example,, ¥,,) = (m|n). Butthe meaning
of (3.7) is clear.) Then, from (3.3) it is obvious that

(W, 0+@) = (0¥, D) (3.8)
with arbitrary state® and®. Finally, we writeW in place of|0). Namely,

Yo = |0). (3.9)
This ¥ is the lowest state, in the sense that it is annihilated by the opepator

Q Yy=0. (3.10)

Using these notations, we can rewrite (3.1) as

Gx,x';z.2:6.&)
_ 1 (W, €7 U (2, x)(Q+ + QU (x, x)(Q4 + QU 2)e s W)
2 (Wo, &7-U (z, 2/)e %7+ J3Wo) '

(3.11)
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(We have useds|0) = %1|0> and inserted d3 in the denominator on the right-hand side.) The

evolution equation (1.27) can be rewritten as
a :
a—U(x, x0) = 2[ikJ3 — f(x)J1]U (x, x0). (3.12)
X

In other words, the operat@r that appears in (3.11) is obtained as the solution of (3.12) with
the initial conditionU (x = xg) = 1 (identity operator).

It may seem that (3.11) is merely (3.1) rewritten in a different style. However, as it turns
out, (3.11) is a more general expression. As shown in appendix B, expression (3.11) holds
without reference to (3.3), (3.7) or (3.9). Namely, (3.11) holds in any representation as long
as the algebraic relations (3.4), (3.8) and (3.10) are satisfied t. So we may forget (3.3), (3.7)
and (3.9); all we need is (3.4), (3.8), (3.10) and (3.12). Expression (3.1) in terms of the boson
operators is merely a specific representation of the general expression (3.11).

We may use (3.11) in any representation. If we are presented with a specific set of
operators/s, Ji, and Q. satisfying relations (3.4), we only need to define an inner product in
the representation space such that condition (3.8) may be satisfied. Thenfrom (3.11) and (3.12)
we can obtain the expression@fin that particular representation.

As a preparation for the analysis in subsequent sections, let us describe here the structure
of the evolution equation (3.12) in a general way. This equation can be expressed as

iU()C,)Co)=2<d—XJ3+d—YJj_) U(x, xg) (313)
ox dx dx
with

X (x) = ikx Y(x) = 2v). (3.14)

(Recall (1.7) for the definition of/ (x).) It is obvious that equation (3.13) has a symmetry
structure. Let us define

X cosd  sind X

( Y99> = (—sin@ cos@> (Y) (3.1%)
Jsp\ _ ( cosf sing J

(in) - (—sine cos@) (1?) (3.1%)

Obviously the evolution equation (3.13) is covariant with respect to the transformation
(X,Y) = (Xg, Yo), (J3, J1) = (J39, J19). Namely, we can rewrite equation (3.13) as
dX, dYy

iU(x,xo)=2 ——Jzg+ —J14 | U(x, x0) (3.16)
ox dx 7 dx ~

with arbitrary6.

In addition to (3.158), let us define/,y = J, and alsoJ.y = Jig £ iJ29. The
transformation(Ji, Jo, J3) — (J1e, J24, J3) IS @ rotation around the 2-axis, and so we
can write

Jog = P(0)J,P(—0) (a=1,23, or+) (3.17)
with

P@) =e %2, (3.18)
It can be showni that this rotation operaf®) is expressed in terms g andJ.. as

P(0) = €2"/27-[cog(0 /2)]?2e™ @N0/2 (3.19)

T Actually, the conditionWp, Q+---) = 0 is sufficient instead of (3.8). However, it is convenient to impose the
requirement (3.8) in order to have a symmetrical description.
¥ See footnote 14 of [15].
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(Here [co%0/2)]%/s = g?'09lcos6/21/s))  Expression (3.19) turns out to be more useful
than (3.18) for actual calculations.

Equation (3.16) is a generalized form of (1.27). As we did with equation (1.27), we shall
regard the term%J&@ in (3.16) as describing the unperturbed evolution, a%'celﬂl,e asthe
‘interaction’. Then it is convenient to switch over to the the interaction picture, as in usual
gquantum mechanics. Ifthe interaction term were absentin (3.16), the evolution operator would
behave as®‘”3*. So we can define the evolution operator in the interaction picture as

Uj(x2, x1; 0) = € 2% 0250 [ (1, xq)e?Xo00)Jae, (3.20)

(Note that the interaction picture depends on the frame ahyl&rom (3.16) and (3.20) we
have

9 dy,
7 Ui, x0;0) = 2d—;e*2X9<X“3ﬂ J1o€X B0, (x, xg; 6). (3.21)

The operatorsJy, and Js3, satisfy the same commutation relations @s and J3
(equations (3.5a)). By using these commutation relations, we can show that
efAJ3,9 Ji,geAJae — e$AJi’9 (322)

for an arbitrary complex numbet. Therefore, (3.21) becomes

%U;(x, x0; 0) = %(eﬂmm + X0 ] U (x, x0; 0). (3.23)
In correspondence with (3.17), let us also define

Q19 = P0O)0LP(-0). (3.24)
From (3.5) and (3.%B) it follows that

Q:A" = APF20,  [eMQi] = AQ M- (3.25)
whereA is an arbitrary complex number. Substituting (3.19) into (3.24), and using (3.25), we
obtain

(Q+.9> _ ( cog6/2) sin(9/2>) ( Q+>' (3.26)

0O_y —sin(6/2) cogb/2) 0

The commutation relations (3%hold with /3 and Q. replaced by/sy andQ. 4. Hence we
have, just like (3.22),

e Ao Qi,eeAJ&H — ejFA/ZQiﬁ_ (3.27)

In this section we derived some general expressions in a rather abstract manner. We shall
make use of these expressions in our subsequent studies.

4. Low-energy expansion in the path representation

The rotation introduced in the previous section is practically important because it is the
transformation that turns the Born expansion into a low-energy expansion, as we shall see
in this section. To describe the low-energy expansion in terms of boson operators, let us
extend the boson picture to the rotated frame.

In the boson representation, the rotation operator (3.19) takes the form

P(@) — Ian(9/2)au/2[00§9/2)] (aTu+uaf)/2etar‘(9/2)afuf/2' (41)
We define the boson operators in the rotated frame as
ag = P(0)aP(—6) ap = P(0)a"P(-6). (4.2)
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From (3.26) and (33 we have
ag\ _ (cog6/2) —sin@/2) a 4.3)
at ) =~ \sine/2) cog6/2) at)- '
Obviouslyay anda;r satisfy the boson commutation relatioz@{a;r] = 1. The operatord, o

(equation (3.17)) can be written in termsaafanda;r as

1t t 1 1 t t
Jro = —3a4a, J_o = 5aga9 Jao = 3(asay +agap). (4.4)

We define the ket and bra representing the vacuum state in the rotated frame as

10; 6) = P(6)|0) (0; 0| = (0| P(—0). (4.5)
They satisfy

a9|0;0) =0 (0: 6la} = 0. (4.6)

In the original sense, the bra conjugate to theiket)|0) is (0| P () (assuming thad is real),
and not{0| P (—0). By defining|0; 8) and(0; | asin (4.5), we are changing the correspondence
between the ket and the bra. This means that we are also changing the definition of the inner
product in passing to the rotated frame. The operat@)uﬂ.t;ndaé;r are still the adjoint of each
other with respect to this re-defined inner product.

As shown in appendix C, we have the relations

CF ot 0 AN
g /?|0) = <cos§ +&'sin E) e-0%%/2|0; 9) (4.7a)
0 0 -1/2
(0|gf®a/? = <cosE —&sin 5) (0; g|hvavas/2 (4.70)
for arbitrary6, where
_ tan6/2) +§ , _ —tan/2) + ¢ 4.8)
T 1-ttan©/2) T 1+etan6/2) '
Therefore, (3.1) may be written with arbitrafyas
. (0 0)e8 w20 (2, x) (@ + U (x, x') (@ + aHU (', )& /2|0; 6)
G = — (4.9)
(0; 0|efvaan/2U (z, 7/)€-0%%/2|0; O)
where
0 0 0 %
a+a' = (cosi —sin 5) ap + (cosz +sin §) ap. (4.10)
The evolution equation (3.16) is written in termsqafandag as
] 1[dXx dy,
aU(x, X0) = > [d—xe(agae +aaag) + d—xg(aaae - agag)] U(x, x0)
1dX, dX, ; _1dYy -
= [EE + Eaeag + Ea(agae —apay) | U(x, xo). (4.112)

By the same reason as explained with respect to equations (1.26) and (1.27), té%e’rm
the last expression of (4.11) can be dropped; expression (4.9) is not affected by the omission
of this term. So we use, instead of (4.11),

dXy + 1 dy,

B
aU(x, Xg) = [Eaeag Ea(agag - a;ag)i| Ul(x, xo). (4.12)
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The first term in the parentheses on the right-hand side describes the free propagation of
the ay boson. We can see that the free propagator connecting the pqirgad x, is
exp[Xy(x2) — Xo(x1)]. The remaining terms, which describe the pair creation and pair
annihilation ofa, bosons, are the interaction terms. The coupling constant of interaction
is 29 for pair creation, and-3 %% for pair annihilation.

Let us set) = +x/2 in the above expressions. We use the following shorthand notation:

Ay = Ain)2 al = aln/z §x =Eunp2 L =8y (4.13)
From (3.14) and (3.18 we find
Xinjp(x) = £3V(0)  Yanpp(x) = Fikx (4.14)
and so the evolution equation (4.12) with= 47 /2 reads
a 1 dv .
S U x0) =3 [:I: O 14, Fik(@sas — alal)} U(x,x0).  (4.15)
X

From (4.15) we can see that the coupling constant of interacti@n2s &part from a sign. In
other words, the expansion in terms of the interaction gives an expansion in tetns ofE.
Thus, by working withd = £ /2, we can obtain a low-energy expansion. Setfing +/2
in (4.9), we have
G — {0 T/208 442U @ )alU (x, xNalU (o, )20 /2)
(0; 77/ 2| €8s /2U (2, 2)€-8312|0; 77 /2)

(0; —/2]€6-4-0-12U (z, x)a_U (x, x"Ya_U (x', 2 )&-a-a 2|0; —r/2)

(0; —/2|€5--0-/2U (z, /)43 /2|0; —11/2)

(4.169)

=2

(4.16)

These expressions have almost the same structure as the expressior=f@ given by
f/q_uation (3.1). The only difference is that the operatera® has been replaced bﬁcﬂ or
2a_.

In section 1 we derived the boson representation from the representation in terms of paths.
Now we may reverse this procedure; the description of the scattering process in terns.of the
boson can be put back to a description in terms of paths. The free propagatofiofttbson,
etV -Vil/2 i represented by a line connecting the poitsindx;. The pair creation
or annihilation ofa. bosons corresponds to the turning point of the path, and a scattering
factorLik is assigned to each turning point. (Taking account of the symmetry factor, we need
to multiply by 2 the coefficien%ik in (4.15).) There is also the scattering described by the
operators &%4+/2 and é-7:3+/2 in (4.16). This gives a factdr, andg’ at the pointg andz/,
respectively. In summary, we obtaf as the sum of diagrams (paths) with the rules shown
in figure 6. Since the operator assigned to the endpoints of a path is/8aWor +/2a_, the
line at the endpoints sets out to the rightéor +77/2, and to the left fod = —z /2. The two
factors./2 bring forth an overall factor 2, as in equations (4.16). This diagrammatic expansion
gives an expansion in powers jof

Let us calculate the first few terms of expansion. We work wite= +7/2, and use
expression (4.1%. (It is easy to see that the same result is obtained &vith —z/2.) The
propagator is expanded in powerskadis

G =go+kgr +k’gp+---. (4.17)

Figure 7 shows the diagrams contributing to the zeroth-order ggrihese are the paths that
have no turning points exceptaandz’. (The rules for interpreting the diagrams are given by
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Figure 6. Diagrammatic rules in the frame with angle Figure 7. Diagrammatic representation gf.
0 =+m/2.

figure 6 with the upper sign. As explained above, there is an overall factor 2.) These diagrams
sum up to
g0 = 26,dY @OV WI2dV@O-VEIl/2

X[l + $+$Lev(z)7V(z/) + (%_+%_/7ev(z)7V(z/))2 + (%-+§/7ev(z)fv(z'))3 .. ]

2&. 2V@-V(D)-Vhl/2 —_2ag lV)+v]/2
=% , = : (4.18)
1—eV@-V@g g e VRE_+e Vg

where we have usegd = —1/&_. If we define

Eo=e0g B =tV (4.19)
then (4.18) becomes

g0 = 26 Vervenz_~1 (4.20)

§-+&l

The terms of ordek can be calculated in the same way. The diagrams contributing to
g1 are shown in figure 8. Here we have defined the ‘renormalized’ propagator as in figure 9,
which amounts to

év(-’CZ)*V(xl)]/z[l + $+§LeV(z)7V(z’) + (%'4.5/79‘/(2)7‘/(5))2 +-0]
dV 2=V (x]/2
T 1O Vg
Using (4.21), we can calculate the contribution from the upper-left diagram of figure 8 as

z aV»m-vhl/2 dV»mM-v)l/2
—2ik . - - dy
. \1—eV@-V@g g 1—-eV@-V@gg

(4.21)
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Figure 8. The diagrams contributing tg,. The heavy line is defined in figure 9.

2 4

= ke ez (1 £2 / e'0dy (4.22)
e+el ) Uk

where the diagram has been integrated over the position of the turning point in the region

(x, z). Similarly, the upper-right diagram amounts to

Dike? /Z dV@-Vel/2 (

dV@-viyl/2
1-—e/@-V@gg

2
) e[V(z)7V(x)]/2dy

2

= 2ike VDV EI2 <— L ) / ) eV Wdy. (4.23)
§-+&L ) Jx

We can evaluate all the six diagrams of figure 8 in this way. Summing them up we obtain

2
g1= 2ie V@+venl/2 [ _ 1 _
§-+&l

z x' X z
% |:f e—v(y)dy _ (é/_)Z/ eV(y)dy + é-_é/_ / eV(y)dy _ éE / eV()’)dy]_
| ) (4.24)

We can go on in this way and calculae, gs, etc. However, this procedure becomes
more complicated for higher-order terms. Although this representation in terms of paths is
instructive, it is not particularly convenient for the practical calculation of these expansion
coefficients. To calculate these coefficients in a systematic way, we introduce in the next
section a different representation of the scattering process, which makes use of a different kind
of boson operators.

5. Tree representation: another boson picture

Figure 106) shows a typical path contributing to the left reflection coefficignfor a certain
interval (see equation (Xp. We may notice that this path can be represented by the ‘tree’
shown in figure 14f). The correspondence between the path and the tree is illustrated in
figure 11. As in this example, every path contributingacan be uniquely represented by a
tree, with the rules given by figure 11. This motivates us to introduce another kind of boson
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Figure 9. Definition of the 'renormalized’ propagator (equation (4.21)).

Figure 10. (a) A path contributing to the left reflection Figure 11. The correspondence between the path and the
coefficientr;. (b) The tree corresponding to the abovetree.
path.

operator for describing the scattering process; we interpret the tree in figimeatttiade up
of propagation lines of this boson.

Letb andb denote the annihilation and creation operators of this new boson. They satisfy
the commutation relation

[b,b"] = 1. (5.1)

Recall that the operators. are represented ak = —a'a'/2 andJ_ = aa/2 in terms of
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a anda' (see equations (3a)). It can be seen from figure 11 that the pair annihilation of
a-bosons corresponds to the annihilation of a sirgl@oson, and that the pair creation of
a-bosons corresponds to the splitting af-&oson in two. So we can guess that it would be
possible to represent, and J_ by the operators-b's'b andb, respectively. The operator
J3 should describe the free propagation of thboson, and so it would have the formb.
Indeed, if we write

Jo=—b"b"p J_=b J3=b"b (5.2)
we can easily see that these operators satisfy the commutation relatic)s §8ovided that
b andb' satisfy (5.1).

However, (5.2) is not sufficient for describing general scattering processes. Letus consider
the diagram shown in figure 1&(¢ This is a typical path contributing to the transmission
coefficientt for a certain interval (equation (). Such a path cannot be represented by
a single tree as in figure 1)( Instead, it can be represented by a group of trees, as shown
in figure 12p). From figure 12 it is obvious that the operatfr must now include the
creation term of a singlé-boson. Namely, the first equation of (5.2) should be replaced by
J: = —b"b"h—b. Inaccordance with this, the operatlarshould be modified tds = b'h+3,
in order to satisfy the commutation relations @.5Thus, to represent the scattering process
corresponding to the path in figure &2(we have to adopt

Jo=—b"bTh —b' J_=b Ja=b"b+3. (5.3)
In order to give a general description of scattering processes, (5.2) and (5.3) must be
unified. Thatis to say, we must find a generalized expression that includes both (5.2) and (5.3)

as special cases. This can be achieved by introducing fermion operators.ahdt" be
fermion annihilation and creation operators, satisfying

2=(c"h?=0 {e,cY=ccT+cfe =1 (5.4)

(These operators commute with the boson operatarsib'.) Using these fermion operators,
we can put (5.2) and (5.3) together as
Jo=—b"b"b—b'cTe J_=b Ja=0b"b+3cte. (5.5)

The expressions (5.2) and (5.3) are recovered by restricting (5.5) to eigenstates of the fermion
number operatar’c, with eigenvalue 0 and 1, respectively. Now the creation term of a single
b-boson inJ; (the first equation of (5.3)) is re-interpreted as the emissiorbelhason from a
c-fermion. The path in figure 18] is represented by a tree as in figured2ith a fermion
line as the trunk.

Itis rather trivial to see that (5.5) satisfies @.5The real merit of introducing the fermion
is that it enables us to construct a representation of the superalgebra (3.4). As we saw before,
Q. andQ_ describe the endpoints of a path. From the correspondence between the path and
the tree, it is obvious thaP. should include either creation or annihilation of a fermion. So
they would be expressed @ = Aic+Asc’ andQ_ = Asc+Aasct, whereA; (i = 1, 2, 3, 4)
are functions of the operatabsandb . Itis not difficult to find A; such thatQ. andQ_ satisfy
the relations (3.4) together with the operators (5.5). The answer is

0+ =btc+bTbct O_=c+bc'. (5.6)

We can easily check that (5.5) and (5.6) satisfy (3.4).

There is another way of representing a path by a tree. For example, look at figaye 13(
This is a typical path contributing to the right reflection coeffici®t(equation (2.5)). It
is more natural to represent such a path by a tree that grows in the opposite direction, as in
figure 13p). In other words, it is more natural to use

Jo=—b' J_=b"bb+bc'c J3=bb+1c"c (5.7)
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(@)

(b)

@

®) 1 dy y

bt b

Figure 12. (a) A path contributing to the transmission Figure 13. (a) A path contributing to the right reflection
coefficientr. (b) Tree representation of the above pathcoefficientR,. (b) Representation of the above path in
(c) Re-interpretation ofkf). The broken line is the terms of a tree that grows to the left.

propagation line of the fermion.

rather than (5.5). The operatafs, that satisfy (3.4) with (5.7) can be found as

0.=c"+b'c 0_ = bc' +bbe. (5.8)

Thus, we have two different ways of realizing the superalgebra (3.4) in terimbfc,

andc’. We use the superscripisand R to distinguish one from the other; we write
L _ _ptpty _ pt.t L_ L _ptpyd.t

J+L JlrabbTécc LJ_ bT Jy=bb+s3cc (5.9)

Q;=b'c+b'bc Q- =c+bc

and
JE=—p' IR = bbb+ bcle ¥ =b"p+1cte
oF = cT+p'c 0% = bt +bbe.

Both {J£, J£, 04} and{J£, JE, OF} satisfy relations (3.4).

(5.%)

6. Propagator in the tree representation

Let us defind0) to be the vacuum state satisfyib)) = 0 andc|0) = 0. (Although we are
using the same notation as the vacuum ofitfmson, there would be no danger of confusion.)
The Fock space generated by applyidgandc! to |0) is the representation space on which
the operators (5.9) act. We define the bra conjugate to a ket as usual. In partijatisfies
(0]p" = 0 and(0|c" = 0. Using the bra and the ket, the ordinary inner product in the Fock
space is expressed aB|®). We assume that the vacuum state is normalizg@|@s = 1.

We wish to write the expression (3.11) in our new representation (5.9). To do so, we have
to define an inner producty, ®). Now it is not appropriate to adop®, ®) = (¥ |d), since
this inner product does not satisfy the requirement (3.8) with eitHeor Q.

Let us notice that the operatar§, Q% andJ%, QF are related by

MQOR = oim MIR =JlMm (a=1,232) (6.1)
where
M=T®"b+cle). (6.2)
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HereI" denotes the gamma function. This operatéris diagonal in the number states.
Definition (6.2) means

M (" (B")"10) = (n+m — D" )" [0) (6.3)
and therefore
O1p" ™ M(cH™(B1Y'10) = (n +m — 1)1 S (m = 0orl). (6.4)

Relations (6.1) can be readily verified by comparing the matrix elements of both sides in the
number states.
Using the operatoM, we define

(U, D) = (V| M|D). (6.5)

From (5.9) we find thaD? is the adjoint oni in the usual sense (that is, adjoint with respect
to the ordinary inner product in the Fock space). Hence we can see that the inner product (6.5)
satisfies (3.8). Indeed, we have

(W, Q5 ®) = (W|MQE|®) = (W|QLM|D) = (QXW, ). (6.6)

As can be seen from (6.6), with this inner product the opera@diplay the the role o«
in (3.8).

There is a subtle point here. Since the gamma function has a pole at the origin, the operator
M produces an infinity when applied to the vacuum state. In other words, equation (6.3) is
not well defined fom = m = 0. This difficulty can be circumvented as follows. We remark
that (5.9) can be generalized to the form

JE=—b"b"b — b (cTc+v) JE=b JE=b"b+3(cTc+v)

6.7a
Qf —plc+ (bTb+ U)CT QE =c+bc' ( )
and
R _ _pt R — bbb +b(cTc + F=b"b+3(c"c+
JE = _p JX=b"bb+b(cle+v)  JF=b"b+5(cTc+v) (6.70)

o = T +ble oRr = bet+ (bTh + v)c

wherev is an arbitrary parameter. We can easily see that these operators still satisfy (3.4) for
arbitraryv. Relations (6.1) remain satisfied if we modify the operatoto

_ CBTh+cle+v)

(6.8)
'v+1
Using the formuld™(x)/T'(x + 1) = 1/x, we find
1
M|0) = ;|O). (6.9)

WheneveV |0) or (0| M appears in calculation, we should use (6.7) and (6.8) with finiéad
then take the limiv — 0. For example, although the expressitn¥ |0) is not well defined
with (5.9) and (6.2), we can calculate it with (6.7) and (6.8) as

1 1v 1
JiM|0) = ;J§|o> = ;§|o> = §|O>' (6.10)

Unless the ill-defined expressions appear, we can use (5.9) and (6.2) rather than (6.7) and (6.8).
(As a matter of fact, we do not need (6.7) and (6.8) any more in this paper, now that we have
derived (6.10).)

Writing (3.12) with the specific operatord andJ R given by (5.9), we define the evolution
operatord/- andUR by

i) :
oy Ur e xo) = [2ik I3 = 2f (0 U (. xo) (6.11)
X
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with the initial conditionU/ »® (x = xo) = 1. From (6.1) it is obvious that
MUR =UutMm. (6.12)
Now we are ready to write (3.11) in our present representation. The lowestigate
satisfyingQ® Wy = 0 is the vacuum stat®). Using the inner product (6.5), we can write
(M UR (2, x)(QF + QB UR (x, x)(QF + QF)UR (', )e ¢ |0)
200 Me“UR(z, 2)e 87 JK|0)
_ (017U 2 x0)(Q4 + QU (x, ¥ (04 + Q1 UM, ) M) 6.13)
2(0|- UL (z, 2/)e 5 14 M|0)

where we have used (6.1) and (6.12) to derive the second line. The quantity in the denominators
of the expressions (6.13) turns out to be unity, as we shall now see. From) éné
b|0) = ¢|0) = 0 it follows that

G =

JEoy=0 J¥10) = 0. (6.14)
In view of (6.14) and (6.11), it is obvious that" does not affecl0):
U%0) = |0). (6.15)

So, using (6.10), (6.14) and (6.15) we find
200167 U (z. 2)e 7 U5 M|0) = (0l Ut (2, 2)e F 7 10)
= (017 UL (z, 7)|0) = (0]7°|0) = (0]0) = 1. (6.16)
Consequently, (6.13) takes the simple form
G = (OME"UR (2, x)(OF + 0®)UR (x, x') (X + 0®)UR (', 2)e ¥ |0)
= (01 U (2, x)(Q% + Q1)U  (x, x)(Q% + Q1)UL (v, 2)e ¥/ M |0).
(6.17)

By using (6.1) and (6.12), we may move the operatbto anywhere in the middle of the
expression; for example,
G = (016 U (2, x)(Qf + Q1MU* (x, x)(QF + 0F U (', )e ¥ ¥ |0)
= (016" U (z, )(Qf + Q1)U (x, x)M(QF + QF)U (', e 77|0).
(6.18)

The expressions (6.18) are more convenient than (6.17) as they do not inf|Qgder (0| M,
which requires a special care. We shall use the last expression of (6.18) for our further analysis.
We define

) =€’ |0) (nl = (0" (6.19)

wheren andn’ are arbitrary complex numbers. (It would be more appropriate to Wyite
instead ofn| here, since itis the bra conjugate to the|k&}. However, we omitthe asterisk just
for simplicity.) The states defined by (6.19) are the coherent states, which have the properties

! ! / i 8 / a
blny=n'ln'y  @mb"=nm by ==Y lb=——l. (6.20)
an an
SinceJ! = b andJF = —b', we can write (6.18) in terms of the coherent states as

G = (E|U"(z, x)(Q% + 01U (x, XYM (QF + Q®YUR (', 2)1E). (6.21)
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Let us also remark that the scattering coefficients have simple forms in this representation.

From (3.2), (6.18)and (5.9) we have

7 (x2, x1) = (0]cU " (x2, x1)c"|0) = (0lcU* (x2, x1)¢T|0)

R (x2, x1) = (01bU " (x2, x1)|0) Ri(x2, x1) = (0|U*(x2, x1)b"|0).

These expressions indeed agree with the graphical interpretation shown in figurgs 12(
13(b) and 100).

(6.22)

7. Low-energy expansion of the propagator

This new boson representation turns out to be extremely useful in studying the low-energy
behaviour of the propagator. The expansion coefficigntsf (4.17) can be systematically
calculated by using this representation, as we show in this section.

Let us consider the rotation introduced in section 3. The rotation operator is given by the
general expression (3.19). Since we are now dealing with two sets of opefat@amely,
JL andJF), we need to consider the corresponding two rotation oper#&b(g) and P* (9)
defined by

PLR(G) = 0127 " [cog /2)] 25 " g a0/ (7.1)

Correspondingly, we define the two sets of boson and fermion ope(agorig;“, ck, c(;‘L} and
(bF, bi% f. ci¥y as

by® = PER@BPER(—0)  biHF = PER@O)DLTPER(-0)

R pLR@)CPLR(—g) R = PLR@O)C PLR(<p), (7:2)
We also have two sets df and Q operators with angle,
T = PRE@ILTPER ) 0L = PRR©) 0L PR (0. 7.3)
The operators (7.3) satisfy the same relations as §3.41ad (3.26):
L,R ; L.R
(ijZR) (% o) (i) (7.4
0%y cog6/2) sin@©/2) )\ [ 0L F
(Qf;{f) - (— sin(0/2) cos(e/Z)) ( L, R) (7.4b)

The boson and fermion operators (7.2) have more complicated forms. As shown in appendix D,
we have
bk =[cos(6/2) — sin(/2)b™%b — sin(9/2)[cos(6/2) — sin@/2)b"]c"c
Wi sin(0/2) + cog6/2)b"
9 7 coq6/2) — sin(/2)bt (7.59)

+
L _ qi t tLo_ c
¢y =[cos(0/2) —sin(0/2)b']c cg = c086/2) — Sin@/2b"

and
bR — sin(@/2) + cog6/2)b
% ™ cog6/2) +sin(0/2)b
biF = b'[cos /2) + sin(@ /2)1;]2 + sm(e /2)[cos(6/2) + sin(0/2)b]c e (7.%0)

R
0 = Cog0/2) +sin@/2)b = [cos(6/2) +sin(6/2)b]c".
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Thisis a highly nonlinear transformation, in contrast to the simple relation (4.3) forltloson.
Here the fraction of operators is to be understood as an infinite series; for example,

: = 3 tn
coS0/2) —sin(@/2)b" _ cos6/2) ;[tan(e/z)b I". (7.6)

We define the vacuum ket and bra in the rotated frame as
0:6) = PX©)10)  (0:6] = (0|P*(-0). (7.7)
They satisfy
bK|10;6) = cK10:6) =0 (0 01b)" = (0;0]c}" = 0. (7.8)
Corresponding to (6.19), we define
0y =€ |0 0) (0] =10; 01 (7.9)

These states are the coherent states in the frame with @ngfefact, they are also coherent
states in the original unrotated frame; we can show that, for arbirary

&"10) = &44°|0; ) (O = (0; 9|€" (7.10)

wheregy, andé’ , are defined by (4.8). The derivation of (7.10) is the same as that of (4.7),
and it is given in appendix C. With the definitions (6.19) and (7.9), equations (7.10) read

&) = 1624:0) (&1 = (801 01 (7.11)

Thus we find that a coherent state in one frame is also a coherent state in any other frame.
Using (7.11), we can rewrite (6.21) as

G = (& 0|U"(z, x)(Q% + 0D U (x, XYM (QF + 0FYUR (', 2)IE.: 0) (7.12)
or, more generally,
G = (£4; 0|U (2, x)(QE + QLYU  (x, xYM(QR + Q®FYUR(x', 2)|E ;0 (7.13)

where bothy andé’ are arbitrary.

As in section 4, we can obtain the expansion in termé loy working in the frame with
angle+r/2. Before going on, let us make some definitions in order to simplify the notation.
We write
FL_ gL Tl _ g tL ~L _ L ~tLo_ fL
b*=bZ,, b =b_, ¢=ctyp cr=clp, (7.140)

s s t ~ ~ t

bR =1}, b =bl%, F=ck R =clf, (7.1%)

Itis obvious that transformation (7.2) preserves the boson and fermion commutation relations.
So we have

[bF, 6™ =1 bR, 6™’ =1 (7.1%)
(et,éty =1 ek &’y =1 (7.1%)
@2 =@E"M?2=0 &2 = (™2 =o. (7.1%)

The operator$® andb ™ commute withé® andé'™. Similarly, 5% andb™ commute withé®
andé'R,
We also use the notation

J;& = Jiﬁn/z j3L = Jé—n/z Qi = Qiﬁﬂ/z (7.16)
Jf = _Jf,m/z Jefe = _Jsfm/z Qi =+ §,+n/2- (7.1&0)
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These operators are expressed in terms of the boson and fermion operators (7.14) as

B _ gt aL FL_ pL = et 4 Lttt
OL = piLal + prLpLat O — gL+ pLatt (7.173)
L— L
and
_BRGRR _ pRATRER JR = TR JR = _ptRRR _ 15RGR 711
OF = _BRETR _ pTRGRGR OF — G1R 4 GTRGR. :

Equations (7.1a) have exactly the same form as (&9but equations (7.1 are different
from (5.%) on account of the definition of signs in (7146 We have defined ® and O this
way, so that/t, 9F andJ®, OF may satisfy

MQOX =0l m MJR =JEM (7.18)
just like (6.1). (The relations (7.18) can be verified using (6.1), (7.4) and (7.16).) Obviously,
JE, JE, andQ} satisfy the same relations as (3.4). Itis easy to seefthai }, and 0%, too,

satisfy (3.4); namely, the relations (3.4) hold withQ replaced by either -, Q% or J®, OF.
Let us also define

In's R) = s +7/2) (m: LI = (n; —7/2| (7.19)

where the right-hand sides are the coherent states (7.9pwitht /2. From the definition
of the coherent states it is obvious that

PRI Ry =n'In's Ry (n; LIB™ = n(n; L| (7.200)
R G oD
b™In's Ry = —In's Ry (n LIb" = —(n; LI. (7.200)
an an
Note that these states also satisfy
iRy =0 (L™ =0. (7.21)
From (7.11) and (4.8) it follows that
In's R) = |¢') (m; LI = (¢] (7.22)
where¢ = (1+n)/(1—mn), ¢ =1 +n)/A—7n).
Now let us return to (7.13). To obtain an expansion in terms,ofie setd = —x/2

ande’ = +r/2. (This choice of signs makes the resulting expression most simple.) Setting
0 = —m/2 andd’ = +xr/2 in equation (7.13), and using the relation

0"+ Qb = V201" (7.23)
which follows from (7.4), we have
G =2(_; LIU*(z, x)Q U (x, Xy MQRUR(x', 2)|E"; R). (7.24)

(Recall definition (4.13) fog_ and&’ )

The evolution operator&* and U® satisfy equation (3.16) (witl/ and J replaced
by ULR and J&-®) with arbitraryd. We used = —n/2 for UL, and6 = +m/2 for UR.
Substituting (4.14) into (3.16), and using the notation (7.16), we have

3 dv - - 5
a—UL’R(x, x0) = [—d—J;R +ik(JER + JL’R)] ULR(x, xo). (7.25)
X X

The term—4%J;°* in (7.25) describes the free propagation of #e? boson and thé’-%

fermion. Smce]L = b bt + 1M EL, we can see that the free propagators ofithéoson
and thect fermlon connecting the pomrq andx, have the values, respectively &2~V 1]
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tL itL
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Figure 14. Diagrammatic representation of propagatorsigure 15. The interaction verticesa ikJ% and k J~,
of: (a) b’ boson and* fermion; @) b*® boson and¥ (b) ikJF and k J
fermion. * -

and elV@)-V@l/2 (figure 146)). Similarly, the free propagators of ti& boson and thé®
fermion are @2~V gnd &V2-V@l/2 respectively (figure 14)). The operatorg=-*
are treated as the interaction, with the coupling consfantThe interaction vertices, which
can be read off from (7.17), are shown in figure 15.

Now we move to the interaction picture, as explained in section 3. The evolution operators
in the interaction picture are defined by (3.20). We write

Uk (x2, x1) = UL (x, x1, —7/2) = & DB YL (x, xp)e VK (7.268)

UR (x2, x1) = UR (x2, x1, +71/2) = & DB UR (xp, x1)e VOV (7.260)
Settingd = +7/2 in (3.23), and substituting (4.14), we obtain

J ~ . ~ ~ ~

aU,L’R(x, xp) = ik(eV @ JER + VO JERYGLR (x| xo). (7.27)

This differential equation, with the initial conditioti* (x = xo) = 1, is equivalent to the
integral equation

UFR(x,x0) =1+ ik/ dy(@" W IR+ eV O TER TR (v, x0). (7.28)
X0

From (7.28) we can obtain the expansiorﬁde in powers oft. Let us introduce the notation

[s1, 52, ..., sa]2 E// dyi---dy, eXp[ZsiV(y[):|. (7.29)
XK1y < Ky SX2 i=1
Solving equation (7.28) by iteration, we obtain
o0
U, x) =Y (10" Y s, s, ]2 JER - JLE (7.30)
n=0 {s;==%1}

whereJ® means/{® fors; = £1. (Note that/® with s; = +1 is notJ;*.)
We rewrite (7.24) in terms dff /* as

G = 2(_; Lle—v(z)J3L U1L(Zs x)eV(x)JsL Qfe—V(x)JSL

x UIL ()C, x/)MeV(x’)js,R Qfefvoc’)j;’? UIR(X,, Z/)eV(zr)js.R |E,_v R) (731)
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where we have also used (7.18). From (3.27) it follows that
eV(x)i3L QEe—V(x)J} — g VW2 QE (7.32)
eV(x’)f:f Qfefvor’)j:f — 87V(x')/2Q§. (732))

For arbitrary complex numbessandea’, the coherent states satisfy

¢ Ry = 1€ R (s LI = (@ L. (7.33)
Hence we have

ORI Ry =B R) (g LIeTVOF = (E L (7.34)
where we have used definition (4.19). Inserting (7.32) and (7.34) into (7.31) gives
G = 26 VOVON2(E L L|TF (2, 0) QL UF (x, XYM QRUF (x', )€ R). (7.35)

We substitute into (7.35) the expressions (7.17) @r®. Since the operator§/"* do
not create or annihilate fermions, from (7.21) it follows tHéL;L|0,LETL = 0 and
¢RUR|E ; R) = 0. Therefore, we obtain

G =2e VOVEN2(E - [0z, x)é UL (x, xYMERUR (X', 2)|E ; R). (7.36)

Substituting (7.30) into (7.36) yields the expansion of the propagator in powgrasof
G = 2e [V+Vinl/2

nitny+n L roLn "
E E (ik)rm2 3C(sl,...,snl,sl,...,snz,sl,...,sns)

ny,n2,n3=0 {s;,s!,s/=+1}

x[s1, ..., S”l]z’ [EETI N 191 K A ¥ (7.37)
where
C(s1, --~,Snl;S1,-~-,S;,2§S/1/,-~ s”)
= (6 LUy - J%ELJEZ S JEMERIE L TRIELR). (7.38)
By using (7.18), we can also write
C(s1, ...,snl;si,...,s,’lz;s/l/,...,s;;)
= (£, L|JA§3 e Jy ELMJéf J’“TRJ;e - JREL R). (7.3%)

We shall see in the next section how to calculate the coeffic@mtsfined by (7.38).

8. Calculation of the expansion coefficients

Since the operataf{* does not change the number of fermions, we can divide it into sectors
with a fixed fermion number. Namely, we can write

JE = JORELEE 4 JPEEtL Gt (8.1a)

JE = JORGRETR 4 JORETRER (8.10)
with

J(/)L _pILpILpL ];TL jff)L = hL (8.29)

JOR = —p™RpRpE — jbR JUR = pIE (8.20)



Boson representations of one-dimensional scattering 215

wherej = 0 or 1. The operators (8.2) are obtained from (7 17) by repla&ihg or ¢TReR
with the numberj. In other words“* is the restriction ofi =¥ to eigenstates @ff--X &Lk
with eigenvaluej. Substituting (8.1) into (7.38, and using (7.21), we obtain the expression

o ron
C(sl,...,snl,sl,...,snz,sl,.. sn3

= E LI TP T TP MER TOR L JORE R) (8.3)
n3 b np L n B
which is more convenient for practical calculations.
We must first calculate the coefficient (8.3) far= n, = nz = 0: namely,

CGs) = (s LIE"ME™IE Ry, (8.4)
By using (7.22), we can rewrite this as
CG3) = (hle"ME™|) (8.5)

whereh = (L+&.)/(L—&_), i = (1 +&)/(1 — £). From (7.14) and (7.5) we have

1 1
&t = ﬁ(l +bhe &R = ﬁ(l +b)c'. (8.6)
Substituting (8.6) into (8.5), and using (6.20), (6.19) and (6.4), we obtain

CG;)=3@+hy@+h) 0|e‘”’cMcTe’5”’T

- _(1 +h) (L +h) Z‘ ';): o1p" cMct (b |0)
1@+h@+h) -1
:—1h1h hh”— . 8.7
A +h) A+ )Z( ) il e (8.7)

Multiplying this by the factor 2elV®*V()l/2 (see equation (7.37)), we reproduce the
previously obtained result (4.20) for the lowest order term. For simplicity, we shall denote the
quantity (8.7) byCo:

-1

§-+&l
It is important to note thafy has the property
o\ [0\ ,
(—) — | Co=m+n)ca, (8.9)
dE_ 9"

To calculate the coefficients (8.3) for general n,, andnsz, we can make use of the
relations (7.20). These relations yield, for an arbitrary operator

(6_; LIADR|E"; Ry = E' (6_; LIAIE"; R) (8.10m)
(s LIB™AIE"; Ry = €_(E_; LIAJE ; R) (8.10)
~ -~ N 0 A ~

(€5 LIAD™EL; R) = AR LIAJE'; R) (8.1Cx)

3 4 .
—(5_; LIAIE_; R). (8.10d)

If we define the differential operators

(_; LIB*AJE' ; R) =

G . NIV
JIt = JUt = 2 8.11a
§ 35_ v (8.1%)
R = (L 7 - I = (8.110)
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then from (8.3) and (8.10) we obtaint

.o r . " "
C(s1, ...,s,,l,sl,...,snz,sl,...,s,w)

_ /0L 5OL 4(DL 5L 5O)R 5OR
=Ty Ty Ty TN IR T Co (8.12)

Itis easy to calculate the terms of orden (7.37) by using (8.12). From (8.12) and (8.9)
we have

C(+L;3) = JO%Co = —(E)°C§ (8.13)
CG+L) =P Co=£E8CF (8.1%)
C(G:+) = JOLCy= —E2C2 (8.1%)
and, similarly,
C(-1:)=C;-1L)=CG:-1) =C4. (8.13)
Substituting (8.13) into (7.37), we obtain the coefficignof equation (4.17) as
g1 = 2ie” VORI 1], — € )[+1]y +E & [+1]}, — E2[+1]3} (8.14)

which agrees with (4.24).

We can use the expression (8.3) directly for the calculation of higher-order coefficients.
From (8.10) and (8.9) we obtain the useful formula
(€5 LIG™Y" (B") & MER B (BR)™1EL; R) = (n+n)E™E )" Cgt . (8.15)

Therefore, the coefficients (8.3) are easily obtained if we express the product of opérators
terms ofb andb ' in the normal-ordered form. This can be done with the help of the recursion
relations

TPEGMYBRY = —m+ HETYHEMY - BTG (8.169)

jE])L(l;TL)m(I;L)n — m(ETL)m—l(EL)n + (I;TL)m(l;L)n+l (81&))
(BTR)n (ER)m ji]:)R — _(m + j)(ETR)n(BR)WHl o (ETR)n+1(ER)m+2 (81&)
(5TR);1(5R)m jiJ)R =m (ETR)n (ER)mfl + (BTR)n+l(l;R)m. (81&1)

It would be instructive to see the structure of the above expressions in terms of diagrams.
Let us first think about the cases = 0 in (8.3). As an example, we consider the second-order
coefficientC(; +1; +1). By using (8.16), we can express> " i’* in the normal-ordered
form as

jjO)LJ:(_l)L — (BTL)Z + 3(Z;TL)3I;L + (I;TL)A(I;L)Z' (8.17)
Using the diagrammatic interpretationﬁﬁ shown in figure 15, and recalling the definition of
fi’)L, we can interpret relation (8.17) as in figure 16. Namely, each term in the normal-ordered
form corresponds to a tree diagram. The root of each tree corresponds to the dperanat
each treetop correspondsity. Substituting (8.17) into (8.3), and using (8.15), we obtain the
coefficientC(; +1; +1) as

(65 LITOMJMEE ME™IEL; R) = Co? +3CHE2 + 2C5E*. (8.18)
The right-hand side of (8.18) can be interpreted as in figure 17. We can see that figure 17 almost
faithfully preserves the structure of figure 16. THé andb” in figure 16 are replaced iy

T This is equivalent to the expansion formula derived in [16]. The correspondence between equation (5.26) of [16]
and equation (8.12) of this paper is given B’ = 7%, /1@ = 7O% and &/2jPe W12 = 7P together
withe™W = —¢_and eV = —£’.
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Figure 16. Schematic interpretation of equation (8.17).Figure 17. Graphical interpretation of equation (8.18).
The broken line stands for the fermion line shown here

for clarity, although fermion operators do not appear in

the expression (8.17). Note thaY” includes the vertex

involving the fermion, whileZ®? does not.

and Cy, respectively. An additional is assigned to an endpoint of the fermion line. The
important difference is that the two diagrams in the lowest row of figure 17 are distinguished,
unlike the case in figure 16. Since we can rewrite (8.8) as

Co=El[L+E & +(E-ED*+(E-E)%+--] (8.19)
the Co in figure 17 can be interpreted as in figure 18. From figure 18 we can also see the
meaning of the propertgp/d&_)"Co = n!Cg, removing a&_ from the graph o’y gives rise
to an additionalCo.

So far, we have been working in the interaction picture. We can recover the interpretation
of the propagator as the ‘sum over the paths’ by going back to the ‘Heisenberg’ picture. To
re-interpret figures 17 and 18 in the Heisenberg picture, we replacg thg&.,, and assign
to each line the value of the free propagator given by figur@)14{hen we can clearly see
that the diagrams in figure 17 (with figure 18) are equivalent to the paths shown in figure 19.

It is straightforward to extend the diagrammatic interpretation to the cases 0. A
typical diagram corresponding to the right-hand side of (8.15) has the form shown in figure 20.
The Cy, except the one assigned to the fermion line, can be arranged in an arbitrary order, and
this gives the factofn +»n’)! in (8.15). Recall that we are using the frame with angke/2
in the region(z’, x’), and—x /2 in (x, z). Since we are using different frames in these two
regions, the diagram in figure 20 cannot be represented by a simple path as in figure 19. In
figure 20, the trees in the regidyl, x’) are associated with th&' particles, whereas i/, z)
the trees correspond to the'‘particles. These two different views are connected through the
Co.

Note that we could have obtained a more symmetric picture by rewriting (7.36) as

Gx.x's 2,21 £, &) = 2e VOV

x(E_; LI} (z, )T UL (x, x)) MU (xo, x)éRUF (x', 2)|E 5 R) (8.20)
where xo is an arbitrary point betweer’ and x. (This expression is obtained by using
UFR(x, x0) U} ® (xo, x') = UFR(x, x') andMUF = UFM.) If we had used (8.20) instead
of (7.36), the diagram corresponding to each term of expansion would have looked like
figure 21.
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Figure 18. Graphical representation @fy. (Note that Figure 19. The tree diagrams in figure 17 are equivalent

the value of the propagator (figure 14) is not assigned t the paths shown here. The heavy line is defined in

the lines in this figure.) the same way as figure 9 (wigh andé” replaced by
andgy).
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Figure 20. A typical tree diagram corresponding to theFigure 21. A diagram obtained from the expansion
right-hand side of (8.15). of (8.20).

9. Concluding remarks

Expression (7.37) is the low-energy expansion of the generalized propagator, where the
coefficientsC defined by (7.38) can be calculated by using (8.3), (8.16) and (8.15). From (1.9)
we can see that the integrals [sz, . . ., 5,]3*, which are defined by (7.29), are expressed in
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terms ofyg as

[s1, 52, ., sal’ =// dyr...dy [ J[woGi] . 9.1
Xa Y1 Y2 K KX i—1

Thus the expansion coefficients of (7.37) are expressed in terms of the ground state
wavefunction. The expansion of the original propag#tds obtained from (7.37) by taking

the limit z — oo, 77 — —o0. In this process, we need to assign appropriate valugsatal

&', corresponding to the behaviour of the potenygk) atx — +oo andx — —oo.

Here let us remark on the types of the poten¥dl) admissible for this low-energy
expansion formula. As mentioned in section 3, we can deal with three cases for the behaviour
of V(x) atx — oo: namely,V(c0) = finite, V(c0) = +00, andV (c0) = —oo. In these
cases, respectively, we set= 0, & = +1, andé = —1 before taking the limit — oco. For
the expansion coefficients of (7.37) to remain finite in this liigx) should either converge
sufficiently fast or diverge sufficiently fast at— oco. It can be found from (7.37) and (8.12)
thatV (x) should satisfy one of the following three conditions:

/ x"[V(x) — V(co)]dx| < o0 V(00) = finite (9.29)
/ x"e”V®dx| < oo V (00) = +o0 (9.2b)
/ x"e"®dx| < oo V(00) = —00 (9.2)

for any positive integer and finitexp,r. (See [16] for a more detailed discussion.)

Note that these conditions are expressed in terms of the Fokker—Planck potendial
and not the Sclidinger potentiaVs(x). From (1.4) it is obvious that (982 is satisfied only
if Vg¢(oo) = 0. We can re-express (@Rin terms ofyg as

/ o) clx

This condition is satisfied i¥s (co0) = +oo andyg(co) = 0. Obviously (9.3) is also satisfied if,

for example Vs (o0) is finite andyo(x) decays exponentially at infinity. Thus, (8)2ncludes

the cases of finit& (co) as well as the caség (co) = +oo. The case (94 has significance

in quantum mechanics when the ground state is not a bound state. If there is no zero-energy
bound state, the functiogig(x) goes to vo atx — +oo or x — —oo. If Yp(co) = +oo we

haveV (oc0) = —o0, whereas/s(oo) is either finite or +o.

Similarly, there are three admissible cases for the behavidttofatx — —oo, with the
conditions analogous to (9.2). Fo(—oo) = finite, V(—o0) = +oo, andV (—o0) = —o0,
respectively, we sét = 0,&’ = +1, and¢’ = —1 before taking the limit’ — —oo in (7.37).
Considering bothx — +oo andx — —oo, we have 3x 3 = 9 cases. In all these cases
except two, we can let — oo andz’ — —oc in (7.37) with appropriate values gfandg’.

The exceptional two cases avco) = +oo with V(—o00) = +oo andV (co0) = —oo with
V(—o0) = —oo. In these two cases, we cannot simply take the limit of (7.37) to obtain the
expansion of5. We can also deal with these cases, although a little trick is needed. This issue
will be discussed in another paper. Here let us only mention that, in theVo@sg = +oo

with V (—o0) = +o0o, we can obtain the low-energy expansiortoby first expanding 4G in
powers ofk, and then taking the limit.

Finally, let us remark that this formalism is also applicable to the three-dimensional
scattering by a spherically symmetric potential, which reduces to the radial problem in one
dimension. The radial Schdinger equation, which has the same form as (1.2), is restricted

< oo0. (9.3)
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Figure A.1. Vertices obtained from figure 2 and equation (1.4).

within the half-line 0< x < oco. Since we have/y(0) = 0, the corresponding Fokker—Planck
potentialV (x) goes to o atx — 0. So we can obtaiy by lettingz’ — O with&’ = 1.

Appendix A. Diagrammatic rules in terms of f

Inserting expression (1.4) into figuresb{(d) gives the six scattering vertices shown in
figure A.1. Let us calculate the first-order contribution@g that comes from &—(c).
Corresponding tod), (c), and p) respectively, we have

- / ' U [ o dkon—n 3L OD iy
/ dy1Go(x, y1) f'(y1)Go(y1, ') = (ﬂ) / dy et g e n-x
X X V1

SN2 poo _ _ , N _ )
= —2ik (2Lk> / dy, k019 f(yl)e'k(yl”—<2|—k) f )= (A.1a)

' UV [ b 97O i
/dylGO(x’yl)f/(yl)GO(Ylsx/):(ﬂ) / dy,e ) . gt
x! x’ Y1
N2
= (5) v - s (A1)
[

! 2 ’
x X ; Y(]l o
[ dnaGote s oG x) = (5 ) [ dydti DGt
—00 2k — 00 dyl

SN2 px! ) o NV ) ,
= 2ik (2'—k) /_ Oodyldk@f*yﬂ f(yl)e'k(">'1)+(2|—k) £ (xHehe=x), (A.10)

(Here we are assuming> x’.) Adding (A.1a)—(A.1c), we have

/ dy1Go(x, y1) f'(yD)Go(y1, x') = —Zik/ dy1Go(x, y1) f(y1)Go(y1, x")

oo

+2ik/ dy1Go(x, y1) f(y1)Go(y1, x'). (A.2)

Thus we obtain the factors2ikf and +2kf for the left and right reflections, respectively.
The verticesd)—(f) of figure A.1 are cancelled by a part of the second-order term

// dy1dy2Go(x, y2) f'(y2)Go(y2, y1) f' (y1) Go(y1, x) (A.3)

that comes from the singularity 6fo(y2, y1) aty, = y;. Indeed, since
2

0y10y2

Go(y2, y1) = —8(y2 — y1) + regular part (A.4)
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the delta function in (A.4) produces from (A.3) the term
~ [ [ dndraGotr. 32 £ 02802 = 30 (42)Go0.x)

= - f dy1Go(x, y1) f2(3) Go(y, x') (A5)

which cancels the contribution frond}(f ).

Appendix B. Representation independence of (3.11)

Expression (3.11) does not depend on the particular form of the operators representing
relations (3.4) and (3.4). The proof for the casé = ¢ = 0 is given in [14]. Here we
show how to extend the proof to honzero value§ ahdé’.

We define the generalized evolution operdioas

U(Xp, Xa3 b, €a) = D(E)U (xp, Xa) D(—Ea) (B.1)
where the operatab is defined as
DE) =1 -EHhe =/ (1) N (B.2)

(The last expression of (B.2) can be derived by using formulae (C.1) and (C.2) given in
appendix C.) The meaning of the operafd) is explained in [15]. Thid/, just like U,
satisfies the product rule

U(.XC, Xbs %-c, éb)l_](xbv Xa; Sbv Ea) = U(.XC, Xas sm &). (83)
SinceJ_ ¥y = Q_Q_ ¥, = 0, we can rewrite (3.11) in terms éf as
Gx,x'; 2,25 €8

_ 195, Uz x:6,0)(Q+ + 0 )U(x, x50,00(Q+ + Q) U (v, 25 0, £) W5)
2 (W5, U(z, 2/ §,§)J3¥5)

(B.4)

wherewd = (1 — &)Wy and W) = (1 — £2)W,. Itis obvious that bothig and W}
satisfy the lowest-state condition:

Q ¥i=0 Q_ vt =o. (B.5)

Infact, (B.4) is a more general expression than (3.11); expression (B.4) is valid fézanyd
g satisfying (B.5), as long aglg, JsWg) # 0. (Here we are allowing for the possibility that
the lowest state satisfying (3.10) is not unique, as in the case of a reducible representation.
If Wy is unique up to a constant factor, it is not necessary to distinguish betisand w5
in (B.4).)
As shown in [14], the evolution operatot, which is defined as the solution of (3.12), can
be expressed in terms of the scattering coefficient®,., andR; as

Uxp, x4) = efRf(X’”x”)J*[r(x;,, xa)]zjseRl(x"’XH)j‘. (B.6)

Substituting (B.6) and (B.2) into (B.1), and using the commutation relationg)(3:® can
expresd/ as

U(x;,, Xa; €, E2) = e*Rr(Xh,Xa;Shséa)J-*[.L_—(xh’ Xa; Ep. Ea)]213eR1(Xb.xa;§/7,éa)J_ (5_7)
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where
a- 55)1/2(1 - Eaz)l/zf

Tt S = TR G — R, — (P — KRG, (68

P . _ g2 R, +(t?— R/R,)E,

Rr(xb’ xaséb’éa) - Eb+(1 éb)l_Rr%-b — Rlé‘_a — (TZ— Rer)gb%—a (B8b)
2 _

Ri(p, X3 £, Ea) = —E, + (1 — £2) Rix (= RiRe)s (B.8c)

1- Rréb - Rl%-a - (7:2 - Rer)nga ’
(See [15] for details. The meaning and significancé,ok,, andR; are discussed therein.)

Now the representation-independence of (B.4) can be proved in the same way as for the
caset = ¢ = 0. Using only the relations (3.4) (and (3.5)) and the expression (B.7), we can
show that
0:U=7'0(Q+-RQ) QU=7"URQ:++@-RR)Q]

U0 - =7t%Q-—RQ)U  UQi=7'RQ +(F*-RR)Q:U. (B.9)
Substituting (B.9) into (B.4), and using (B.5) and (3.8), we have
1+Ri(z, %60 1+R (', 250,

7(z,x;§,0) T(x’,7/;0,8)
1,0 Uz x:6,0U(x,x; 0,000 (', 25 0,8) 0+ W)

G(x,x';z,7;6,&) =

= . B.10
2 (V5. U(z. 25 £, §) J3W§) ( )

Using (B.7), (3.4), (3.5), (3.8) and (B.5), we can also show
(W8, Q_UQW) =2t (¥, UJs¥l). (B.11)

(See equation (5.11) of [14] for the intermediate steps of calculation.) From (B.10), (B.3)

and (B.11), we obtain

1+R (2, x; 6,0 1+R.(x',2:0,8)_
= . Z(y! e ’ T(Z’Z;E’S)'
7(z,x;§,0) T(x',7/;0,8)

Thus, (B.4) reduces to (B.12) irrespective of the particular choice of representation.

G(x,x';z,7;6, &) =

(B.12)

Appendix C. Derivation of (4.7) and (7.10)
Here we derive equations (4.7) and (7.10) at the same time, since they have the same structure.
We use expression (3.19) and the algebraic formulaet
AR = JL AT (C.1)
eM-ef = (1+AB) &Pl eM-(1+AB) . (C.2)
We can calculate, with = cog6/2), s = sin(6/2), t = tan(6/2),
P(—Q)e_(‘c',‘h — e—lJ,CZJ3e[J+e—§’J+
— gt ecz(tfs’)J»,CZJg
=[1—tc2(t — £)] e’ gt [1 — 1 P(t — E)] P3P
— [Cz(l +t§/)]—]3ecz(t—§/).]+e—l.], (1 +t%_/)—.]3
= 8/ ARENI 2] 445"y - (L +18")
= e [P +eg)] e (L +1E) " (C3)
T See appendix B of [14].
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(The symbolk here should not be confused with the fermion operator.) In the last line of (C.3),
we used definition (4.8). We apply both sides of (C.3)0o which satisfies

J100=0  J0) = g|0). (C.4)
Here the value of is % for (4.7) (the vacuum of the-boson), and 0 for (7.10) (the vacuum of
theb-boson and the-fermion). Then we have
P(—6)e¢7|0) = [cox(6/2) + &' sin(0/2)] " e % |0). (C.5)
Therefore we obtain
e ¥70) = [co(0/2) + &' sin@/2)] " P(B)e 57+ |0)
= [cos(6/2) +£'sin(0/2)] Ve 5" P(6)|0)
= [cox(6/2) + £ sin0/2)] " e 5% |0; 6). (C.6)

Settingy = % andv = 0 in (C.6), we obtain, respectively, (4)and the first equation
of (7.10). The relations for the bras can be derived in the same way.

Appendix D. Derivation of (7.5)
We apply both sides of (C.3) (witk andJ replaced byP® andJ*) to the state'|0), where
|0) is the vacuum of thé-boson and the-fermion. Using the relations

JRToy=0 J¥ct0y = 1cT0) (D.1)
we can derive

PR(—0)&"?' 0y = &Lt !

cog6/2) +£'sin@/2) "
Applying PR (#) to both sides of (D.2), we obtain

bt t _ LgbgR l
¢rclio) =¢ c0g6/2) + £ sin6/2)

In a similar way, we can derive

110). (D.2)

ci®10; 6). (D.3a)

1 L
b _ 091k ob D.
(Olce®” = (0: Bl c0%6/2) —Esin@/2) (D-30)
We extend the definition of the coherent states to include the fermion as
€, y') =" |0) = &' (1 +cTy)|0) (D.4a)
(€ vl = (Oge” = (0|1 +yc)e” (D.4b)
wherey andy’ are Grassmann numbers, satisfying
Y=Y =0 {r.ad=.ct=0 .=} =0 (D.5)
These coherent states satisfy
big',y") =¢&E,y") clE.y)y=v'E V)
Tier / 0 / / Ties / 0 / /
bIE Y= —IEy)  EY)=——IE.Y)
. % ) oy (D.6)
(&, yIb" =§(&, vl (&, vlc =y, vl
d d
b= — =— .
&, 7l ag@’y' (&, 7le ay(é,yl
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From (D.4), (D.3) and (7.10) we find

TR/
&,y = P el (1+ o ¥ ) |0; 6) (D.7a)

cog0/2) +&'sin(0/2)

L
)/(,‘6 pL
=(0; 0|1+ S D.7b
&, v1=(0 |< Coqg/z)_gsin(9/2)> (D.7b)
If we define
_ Y ' '
Y= Cog6/2) — £sin6/2) V=0 = cog0/2) + £'sin(6/2) (D-8)
then equations (D.7) read
TR/ IR/ L L
€', y') = & Soe0010,0) (g, y| = (0; 0" Ve (D.9)
This is an extension of (7.10). Extending the notation of (7.11), we may write (D.9) as
1€, v") =184, v 9:0) (&, vl = (5, vo; 0l (D.10)
Hence it follows that
bilE Yy = E4IE.¥) cHIE ) = v HlE Y
’ / a / / I I 8 / /
bifIEL Yy = —1E. Y)Y RE Y = —— 1Y)
o " R (©.11)
(&, vIby~ =&, vl (& vy =va(§, vl
ad d
) bL = ) ) CL = —1s, .
(&, vIbg 859(5 Yl (&, vlcq 8;/9(& 7l

From (4.8) and (D.8) we have

o _ cose gsin(9 ‘2 sine cose §sin9 9

05, "2 2) e 2 "2 2) 7%y

9 6 6\ 9 6 0 0 )

—— =[cos=+&'sin- ] — +sin=(cos= +&'sin= |y '— D.12

o€’ < 25 2) o8’ 2( "6 2)”3;// (b-12)

o _ cose gsine 9 o _ cose +§’sin9 9

vy 2 2/ 3y ', 2 2) ay"
We substitute (4.8), (D.8) and (D.12) into the right-hand sides of (D.11). Then, we use (D.6)
to replacet’, y/, etc byb, ¢, etc. The resulting relations are equations (7.5) applied to the

coherent states. Since these relations are satisfied for arbitrary coherent states, we find that
equations (7.5) must hold by themselves.

References

[1] ChadanK and Sabati® C 1989nverse Problems in Quantum Scattering Thezmg edn (New York: Springer)
[2] Faddee L D 1995Acta Appl. Math39 69
[3] Geszteg K A and Simon B 199@\cta Math.17649
[4] Danielyan A A and Levitan B M 1991Math. USSR 12\86 487
[5] Klaus M 1988Inverse Problemd 505
[6] Witten E 1981Nucl. PhysB 185513
[7] Grosse H 199Recent Developments in Quantum Mechaait# Boutet de Monvett al (Dordrecht: Kluwer)
p 299
[8] Nelson E 1966Phys. Rev1501079
[9] Parisi G and Wu Y 1985ci. Sin24 483
[10] Bernstein M and Brow L S 1984Phys. Rev. Let621933
[11] Jauslh H R 1988J. Phys. A: Math. Ger1 2337



[12]

Boson representations of one-dimensional scattering 225

Risken H 1984The Fokker—Planck EquatigiBerlin: Springer)

[13] van Kampe N G 1981Stochastic Processes in Physics and Chem{gtmsterdam: North-Holland)

[14]
[15]
[16]
(17]
(18]

Miyazawa T 1995). Math. Phys36 5643

Miyazawa T 1998). Math. Phys39 2035

Miyazawa T 1999). Math. Phys40838

Slansky R 198T.es Houches, Session 44 1985P Ramond and R Stora (Amsterdam: North-Holland) p 905
Freurd P G 01986Introduction to Supersymmet(Cambridge: Cambridge University Press)



